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Abstract—Skyline queries, especially those variants that allow users to define their own query criteria, are very promising and practical
techniques in multi-criteria decision making applications. Meanwhile, the growing data volume drives the service providers to outsource
their data to the cloud for reaping economic benefits. However, privacy concerns compel the outsourced data to be encrypted and
require to perform the skyline queries over encrypted data. To achieve the privacy-preserving skyline queries, many schemes were
proposed in the literature. However, those existing solutions cannot fully support the user-defined query criteria in skyline queries, and
most of them employ a two-server model to support skyline queries over ciphertexts, which needs multi-round communications
between the deployed two servers. In this paper, we propose a privacy-preserving user-defined skyline query scheme in a single-server
model, which eliminates extra communications. Specifically, we first formally define the user-defined skyline query. Then, based on the
idea of converting order relations into computing the inner products of two multi-dimensional points, we design three predicate
encryption schemes. Finally, we adopt these predicate encryption schemes to construct our proposed scheme. Detailed security
analysis shows that these predicate encryption schemes are selectively secure, and the proposed user-defined skyline query scheme
is privacy-preserving. In addition, extensive experiments are conducted, and the results show that our proposed scheme outperforms
the alternative scheme by up to an order of magnitude in terms of computational costs when performing user-defined skyline queries.

Index Terms—Skyline query, Use-defined skyline, Privacy preservation, Predicate encryption, Single server model.
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1 INTRODUCTION

A S an important multi-criteria analysis with diverse
applications in practice, skyline queries have attracted

considerable interest in academic and industrial communi-
ties [1]–[7]. Traditional skyline queries need to check expen-
sive dominating relations over the whole dataset. However,
it is impractical and inefficient, since a query user may only
be interested in some attributes instead of all attributes [8]
and have his/her own preferences [9]. Besides, in real-
world applications, query users may only focus on skyline
points that fall within constrained regions [4]. Therefore,
the skyline queries that allow users to select attributes,
preferences, and constrained regions are more scalable and
practical, thus have more promising application prospects.

An illustrative example is that users would like to obtain
a set of interesting hotels around a beach from a potentially
large number of hotels in lodging reservation applications,
e.g., Priceline and Booking. Assume that there are three
attributes for a hotel, (price, distance, score), where distance
indicates the distance from the hotel to the beach, and score
represents the service quality. In reality, some users may
be interested in the price and distance attributes, thus select
them to determine skyline points, while others may pay
close attention to the price and score attributes. Further, for
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an attribute, different users may have different preferences.
For example, a user may like hotels close to the beach.
However, someone would have hotels that are remote from
the beach to avoid being too noisy. Besides, users would like
the retrieved skyline points to lie inside a specific range. For
instance, a user may expect the price to be from $300 to
$400, while someone may only have a budget from $50 to
$100. Such user-defined skyline queries are useful in real-
world applications since they not only enable skyline points
to be more in line with users’ demands, but also facilitate
efficiency for the service provider due to avoiding searching
skyline points over the whole dataset. In this paper, we
consider such user-defined skyline queries, i.e., users can
select attributes, choose preferences, and define constrained
regions, which will be formally defined in Section 3.1.

With the rapidly growing data volume, some skyline
query service providers have to outsource their data and
skyline query services to an external cloud, e.g., Azure, due
to performance considerations. However, it incurs serious
privacy concerns for both the data owner and query users.
On the one hand, the data owner is unwilling to disclose
such valuable business data assets to the cloud. On the other
hand, the query users may be concerned regarding whether
the cloud would collect the query data to accumulate user
profiles. To address these privacy issues, a promising solu-
tion is to encrypt outsourced data and query requests and
perform skyline queries over ciphertexts. In recent years,
there have been a plethora of research work done in the
broad area of privacy-preserving skyline queries [10]–[14].
Unfortunately, they cannot be directly applied to our user-
defined skyline query scenario, which requires the cloud to
search skyline points over encrypted data and meet dynam-
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ically defined query criteria. Existing solutions are either
inefficient or unable to deal with the skyline queries that
allow users to have selections in attributes, preferences, and
constrained regions over ciphertexts. Thus, achieving effi-
cient and privacy-preserving user-defined skyline queries is
still challenging.

Besides, most of the existing privacy-preserving skyline
query schemes require communications between the cloud
and either the query user or an additional cloud to perform
skyline computations [11]–[14]. It incurs extra communi-
cation costs and limits their applications. This two-party
computation is introduced since determining dominating
relations over ciphertexts needs to obtain each attribute’s
order relation while ensuring these order relations without
leaking. Thus, it is significantly challenging to achieve the
privacy-preserving skyline queries only in a single cloud
server and without extra communications to query users.

To solve the above challenges, in this paper, we propose
an efficient and privacy-preserving user-defined skyline
query scheme without an additional server. The core idea
of our scheme is to convert determining order relations into
computing the inner products of two points. Based on this
idea, we propose predicate encryption schemes to achieve
user-defined skyline queries over encrypted data in the
single-server model. First, we propose a multi-dimensional
point-inside-rectangle predicate encryption (MPRPE) to
check whether a point falls within a constrained region.
Then, we design a multi-dimensional point dominating
predicate encryption (MPDPE) to determine skyline points,
in which query users can select attributes of interest and
define their preferences. In order to improve the efficiency
in checking points inside a constrained region, we introduce
R-tree and design a hyper-rectangle intersection predicate
encryption (HRIPE) to retrieve the points inside a con-
strained region over an encrypted R-tree. Specifically, the
main contributions of this paper are three folds as follows.
• First, we design three novel predicate encryp-

tion schemes to determine point-inside-rectangle, rectan-
gle intersection, and dominating relations over ciphertexts.
Among them, MPRPE can determine whether points lie
inside a constrained region, while HRIPE can check whether
two rectangles intersect. Although MPDPE is designed
to determine dominating relations under user-defined at-
tributes and preferences, it can be applied to other privacy-
preserving skyline queries as a component.
• Second, based on these three predicate encryption,

we propose our privacy-preserving user-defined skyline
query scheme in the single-server model. In our scheme, the
lightweight predicate encryption ensures the performance
of our proposed scheme. To further improve efficiency, we
integrate HRIPE to enable searching on encrypted R-tree.
Since we determine dominating relations by computing in-
ner products, our scheme naturally avoids the order relation
leakage on each attribute.
• Finally, we analyze the security of these predicate

encryption schemes and demonstrate that our user-defined
skyline query scheme is indeed privacy-preserving. Further-
more, we conduct extensive experiments to evaluate the
performance of the proposed scheme and compare it with
the existing privacy-preserving skyline query scheme. The
results show that our scheme is computationally efficient

and outperforms the competition scheme by up to an order
of magnitude in terms of computational costs when per-
forming skyline queries.

The remainder of this paper is organized as follows. In
Section 2, we introduce our system model, security model,
and design goal. Then, we review the preliminaries in
Section 3. After that, we present our privacy-preserving
user-defined skyline query scheme in Section 4, followed by
security analysis and performance evaluation in Section 5
and Section 6, respectively. Finally, we discuss some related
works in Section 7 and draw our conclusion in Section 8.

2 MODELS AND DESIGN GOAL

In this section, we formalize our system model, security
model, and identify our design goal.
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Fig. 1. System model under consideration

2.1 System Model
In our system model, we consider a typical cloud-based
user-defined skyline query model, which is comprised of
a data owner O, a cloud server S , and multiple query users
U={u1, u2, · · · }, as shown in Fig. 1.

Data Owner O: In our system model, the data owner O
holds a dataset X with n records, and each record has d
attributes. In this paper, we will use “record” and “point” in-
terchangeably. For ease of description, we say each record is
a d-dimensional vector, i.e.,X = {xi = (x1

i , x
2
i , · · · , xdi ) | 1 ≤

i ≤ n}. We assume that all dimensions are integers. It is
reasonable since we can easily convert non-integer data into
integers [15]. To make full use of these data, the data owner
would like to offer the user-defined skyline query services
to query users. However, since O may not be powerful in
terms of storage and computing resources, he/she tends to
outsource the dataset X and the query services to a cloud.

Cloud Server S : The cloud server is considered as pow-
erful in both storage and computing resources, which serves
as a bridge between the data owner and query users. On the
one hand, it provides storage services to the data owner. On
the other hand, it offers reliable user-defined skyline query
services to the query users. Upon receiving a query request,
i.e., finding skyline points matching query user’s criteria,
S will search on the outsourced dataset X and return the
desired skylines.

Query users U={u1, u2, · · · }: In our system, query users
can enjoy the user-defined skyline query services from the
cloud server S . Before launching a skyline query request,
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they must be authorized by the data owner O with an au-
thorized key, as shown in Fig. 1. That is, only the authorized
users can receive responses from the cloud server S .

2.2 Security Model

In our security model, since the data owner O is an ini-
tiator of the whole system, O is considered to be fully
trusted. However, the cloud server S is considered to be
honest-but-curious, which means it will honestly follow
the underlying scheme but may be curious to learn some
private information. For query users U , we consider the
authorized users to be honest. That is, they will sincerely
follow the protocol to issue the user-defined skyline queries.
Since the cloud server is not fully trusted, the data owner
will encrypt the dataset before outsourcing it to the cloud
server. Therefore, in our model, the cloud server stores the
encrypted dataset and provides the user-defined skyline
query services over these encrypted data to the query users.
Since the cloud server is honest-but-curious, it may attempt
to obtain the private information, including the plaintexts
of the encrypted dataset, query requests, and query results,
based on the stored dataset and the process of user-defined
skyline queries. In addition, similar to [16], [17], we assume
that the cloud server would not collude with any query
user. This is because our work focuses on the privacy
computation technique, which is orthogonal to the current
researches [18], [19] for the collusion issue. Our proposed
scheme can also integrate the approaches used in [18], [19]
to avoid key exposure due to the collusion issue. It is worth
noting that there may be other active attacks, e.g., Denial
of Service (DoS) attacks, to the system. Since we focus on
privacy preservation, those attacks are beyond the scope of
this paper and will be discussed in our future work.

2.3 Design Goal

Under the aforementioned system model and security
model, we aim to present a privacy-preserving and efficient
user-defined skyline query scheme. In particular, the follow-
ing objectives should be attained.

• Privacy Preservation: The fundamental requirement
of the proposed scheme is privacy preservation. First,
the outsourced dataset should be kept secret from the
cloud server. Second, the query requests and query
results should be kept secret from the cloud server.

• Efficiency: It is inevitable that the privacy require-
ments will incur extra computational costs. For prac-
ticality considerations, we need to minimize the
computational costs of querying user-defined skyline
over encrypted data.

3 PRELIMINARIES

In this section, we first formally define the user-defined
skyline queries, and then introduce the Block Nested Loop
(BNL) algorithm for skyline search [1], which will be used
in our proposed scheme.
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Fig. 2. An example of the user-defined skyline query, in which D =
{price, distance, score} The desired skyline points fall within 50 ≤
price ≤ 250, 1000 ≤ distance ≤ 3000.

3.1 User-defined Skyline Queries
In the skyline query realm, the subspace skyline [20], [21]
has attracted extensive attention due to the fact that different
users may be interested in different dimensions of data.
By integrating the preference selection into the subspace
skyline query, Liu et al. [14] proposed the first version user-
defined skyline query. Meanwhile, Dellis et al. [22] showed
that the constrained subspace skyline is more efficient than
the subspace skyline query since the former reduces the
dataset before feeding it to the skyline operator. Besides,
the constrained subspace skyline query is more practical, as
query users may only be interested in the points that fall
within a constrained region.

Definition 1 (Constrained Region). Given a d-dimensional
dataset X , a constrained region Ψ={ψ1, ψ2, · · · , ψd} is deter-
mined by d constraints, where each constraints ψi(1 ≤ i ≤ d)
is expressed as a range along a dimension of the dataset, i.e,
ψi=[ψimin, ψ

i
max]. We define that ψimin and ψimax are the minimum

and maximum restriction values on the i-th dimension.

In this work, we integrate the preference selection into
the constrained subspace skyline and formally define a prac-
tical version of the user-defined skyline query as follows.

Definition 2 (User-defined Dominance). Given a d-
dimensional dataset X , we suppose p = (p1, p2, · · · , pd) and
r = (r1, r2, · · · , rd) are two d-dimensional data points in X .
Let D be the dimension set consisting of all the d dimensions, i.e.,
|D| = d. For any user-defined dimension set B, where B ⊆ D,
p dominates r, denoted as p ≺B r, if it satisfies: 1) ∀ pi, ri ∈ B,
a user prefers the minimum (maximum) value in the dimension,
that is pi ≤ ri (pi ≥ ri); 2) ∃ pj , rj ∈ B such that pj < rj

(pj > rj), where 1 ≤ i, j ≤ d.

Definition 3 (User-defined Skyline Query). Given a dataset
X , a user-defined dimension set B (2 ≤ |B| ≤ d), and a con-
strained region Ψ, the user-defined skyline query returns a dataset
SK={x1, x2, · · · } ⊆ X , where xi ∈ SK is a d-dimensional vector
and satisfies the following conditions:

1) xi ∈ Ψ, i.e., xji ∈ ψj ∀ x
j
i ∈ B.

2) @r ∈ X ∩Ψ such that r ≺B xi.

A simple user-defined skyline query example is shown
in Fig. 2. In the example, X = {x1, x2, · · · , x10}, B =
{price, distance}, and Ψ = {[50, 250], [1000, 3000]}. If the
query user prefers the minimum value for both selected
attributes, we have SK={x6, x8}.

3.2 Block Nested Loop
The Block Nested Loop (BNL) algorithm was proposed
in [1] to compute skylines. BNL builds on the concept by
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scanning the input data, e.g., X , and keeping a list of can-
didate skyline points in a window W . The first data point
is directly inserted into the window. For each subsequent
point x ∈ X , there are three cases:
• Case 1: ∃r ∈ W , if r ≺ x, then x is discarded;
• Case 2: ∃r ∈ W , if x ≺ r, then r is removed from the

window;
• Case 3: ∀r ∈ W , if x is incomparable with r, then x is

inserted intoW ;
where the symbol ‘≺’ indicates the dominating relation,
e.g., r ≺ x means that r dominates x. The advantage of
BNL is its wide applicability, since it can be used for any
dimensionality without indexing or sorting the input data.

In this work, we consider the user-defined skyline, which
leads the input data to be dynamically selected. Since the
BNL algorithm does not need to preprocess the input data,
we will employ the BNL algorithm in our proposed scheme.

4 OUR PROPOSED SCHEME

In this section, we will present our privacy-preserving
user-defined skyline query scheme. Before delving into
the details of our proposed scheme, we first present three
predicate encryption schemes: namely 1) multi-dimensional
point-inside-rectangle predicate encryption (MPRPE); 2)
hyper-rectangle intersection predicate encryption (HRIPE);
and 3) multi-dimensional point dominating predicate en-
cryption (MPDPE), which serve as the building blocks of
our proposed scheme.

4.1 MPRPE

To achieve the privacy-preserving user-defined skyline
query, one of the critical operations is to securely check
whether the data record x lies inside a constrained region Ψ.
In order to deal with this challenge, we construct a Multi-
dimensional Point-inside-Rectangle Predicate Encryption
(MPRPE) to perform the operation over ciphertexts.

First, we would like to introduce two basic defini-
tions [23], which will be used in the MPRPE scheme, as
shown in the following.

Definition 4 (Multi-Dimensional Lattice). Assume the ith-
dimension values can be encoded into discrete integers falling into
[1, Ti], where Ti is the domain of the ith-dimension. Let ∆ =
{T1, T2, · · · , Td}, a multi-dimensional lattice L∆ = [T1] ×
[T2]× · · · × [Td], where [Ti] = {1, 2, · · · , Ti} and 1 ≤ i ≤ d.

Definition 5 (Hyper-rectangle). A hyper-rectangle R in L∆

is defined as R = (R1, R2, · · · , Rd), where Ri is a sub-range in
the ith-dimension, i.e., Ri ⊆ [Ti], ∀i ∈ [1, d].

Obviously, the constrained region Ψ defined in Sec-
tion 3.1 is equivalent to the hyper-rectangle R. There-
fore, the first query condition in the user-defined sky-
line can be addressed by checking whether points fall
within a hyper-rectangle. Considering privacy, we en-
able our MPRPE to check whether a point x falls
within R without revealing the point and the hyper-
rectangle. Typically, our MPRPE scheme has four algorithms∏

MPRPE={MPRPE.Setup, MPRPE.Enc, MPRPE.TokenGen,
MPRPE.Query} and works as follows:

• MPRPE.Setup(∆, w): Given ∆ = {T1, T2, · · · , Td} and
the number of dummy dimensions w (w ≥ 2), the setup
algorithm outputs a random invertible matrix M ∈ Rθ×θ as
a secret key, where θ =

∑d
i=1 Ti + 1 + w. In addition, the

algorithm generates the d-dimensional lattice L∆.
•MPRPE.Enc(x, M, L∆): The encryption algorithm takes

a d-dimensional point x, the secret key M, and the lattice
L∆ as inputs. First, this algorithm encodes the point x =
(x1, x2, · · · , xd) into a new θ-dimensional vector x̃:

x̃ = (reα(x1), reα(x2), · · · , reα(xd),−re, r1
x, · · · , rwx ),

where re and rpx (1 ≤ p ≤ w) ∈ R+ are random
real numbers satisfying re >

∑w
p=1 r

p
x , and α(xi) =

(0, 0, · · · , 0︸ ︷︷ ︸
xi−1

, 1, 0, · · · , 0︸ ︷︷ ︸
Ti−xi

) is a Ti-dimensional vector, i.e.,

α(xi)j∈[1,Ti] =

{
1 if j = xi

0 Otherwise,
(1)

Then, the algorithm outputs the ciphertext of x, denoted
as ||x||, by encrypting x̃ with the secret key M, i.e., ||x|| =
MPRPE.Enc(x, M, L∆) = x̃ M.
• MPRPE.TokenGen(R, M, L∆): On input of a hyper-

rectangle R = (R1, R2, · · · , Rd), the secret key M, and the
lattice L∆, the token generation algorithm can output a
query token 〈q〉. First, the algorithm encodes R into a query
vector q̃ that has θ dimensions:

q̃ = (rtβ(R1), rtβ(R2), · · · , rtβ(Rd), d · rt, r1
q, · · · , rwq ),

where rt, rpq (1 ≤ p ≤ w) ∈ R+ are random
real numbers satisfying rt >

∑w
p=1 r

p
q , and β(Ri) =

(0, 0, · · · , 0, 1, 1, · · · , 1︸ ︷︷ ︸
Ri

, 0, · · · , 0), i.e.,

β(Ri)j∈[1,Ti] =

{
1 if j ∈ Ri

0 Otherwise,
(2)

Then, the algorithm outputs a query token 〈q〉 =
MPRPE.TokenGen(R, M, L∆) = q̃(M−1)T .
• MPRPE.Query(||x||, 〈q〉): On input of an encrypted

point ||x|| and a query token 〈q〉, this algorithm calculates
the inner product between ||x|| and 〈q〉 and outputs true iff
||x|| ◦ 〈q〉 > 0, and false otherwise.

Correctness. We say the MPRPE scheme is correct if one
can determine whether x ∈ R by observing the result of
the MPRPE.Query algorithm, namely, if the result is true,
x ∈ R, otherwise x 6∈ R. We show the proof as follows.

Proof. Given an encrypted point ||x|| and a query token 〈q〉,
the MPRPE.Query algorithm runs ||x|| ◦ 〈q〉:

||x|| ◦ 〈q〉 = ||x|| · 〈q〉T = x̃MM−1q̃T = x̃ · q̃T

= rert(
d∑
i=1

(α(xi)β(Ri)
T )− d) +

w∑
p=1

rpxr
p
q .

(3)

From Eq. (1) and Eq. (2), we can see that, for the i-th dimen-
sion, if α(xi)β(Ri)

T = 1, xi ∈ Ri, and xi 6∈ Ri otherwise.
Therefore, only when all dimensions satisfy α(xi)β(Ri)

T =
1, i.e.,

∑d
i=1(α(xi)β(Ri)

T ) = d, we have x ∈ R. Thus
||x||◦〈q〉 =

∑w
p=1 r

p
xr
p
q > 0⇒ x ∈ R. If x 6∈ R, i.e., ∃xi 6∈ Ri,
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it indicates
∑d
i=1(α(xi)β(Ri)

T ) ≤ d−1⇒ ||x||◦〈q〉 < 0 due
to rert >

∑w
p=1 r

p
xr
p
q . Thus, ||x|| ◦ 〈q〉 > 0⇔ x ∈ R.

Since the MPRPE scheme only reveals the inner prod-
uct’s result of all dimensions, it can naturally preserve the
single dimensional privacy, i.e., whether xi ∈ Ri when
x 6∈ R. Besides, this scheme preserves the privacy about
how many dimensions are inside or outside the hyper-
rectangle R when x 6∈ R.

4.2 HRIPE

By applying MPRPE scheme, we can build a basic solution
to the first query condition of the user-defined skyline
query in a privacy-preserving manner. However, it is not
efficient if we directly use the MPRPE scheme, since the
operator needs to search on all the encrypted points one
by one with the given query token. In order to improve
the search efficiency, we exploit the multi-dimensional tree
based structures to index the data records. Since the space-
oriented indexes, such as k-d tree and Quadtree, may
leak the single dimensional privacy, we employ the data-
oriented indexes, specifically R-tree, which can preserve
the single dimensional privacy [24]. This is because the
space-oriented indexes need to make search decisions on
each dimension separately, while the data-oriented indexes
can take the space as a whole to make search decisions.
However, it incurs a challenge that we need to check
whether two hyper-rectangles are intersected on the non-
leaf nodes of R-tree without leaking the underlying values.
To tackle it, we construct a Hyper-Rectangle Intersection
Predicate Encryption (HRIPE) scheme. Motivated by [24],
we convert the hyper-rectangle intersection operation into
a 2d-dimensional point-inside-rectangle operation and then
extend the MPRPE scheme to build our HRIPE scheme.

Assume that there are two hyper-rectangles, one is query
rectangle R = {(R1, R2, · · · , Rd)|Ri = [Ril, Riu]}, the other is
the minimum bounding rectangle (MBR) of R-tree, denoted
as R′ = {(R′1, R′2, · · · , R′d)|R′i = [R′il, R

′
iu]}. For the i-th

dimension, the intersection relation between two ranges
(Ri and R′i) can be transformed into checking whether a 2-
dimensional point lies inside a rectangle, i.e.,

Ri ∩ R′i 6= ∅⇔
{
R′il ∈ [1, Riu]

R′iu ∈ [Ril, Ti].

Since R ∩ R′ 6= ∅ ⇔ all dimensions hold Ri ∩
R′i 6= ∅, for i=1, 2, · · · , d, we can transform the
hyper-rectangle intersection problem into the point-inside-
rectangle problem and build our HRIPE scheme based on
the MPRPE scheme. Similarly, the HRIPE scheme also in-
volves four algorithms

∏
HRIPE={HRIPE.Setup, HRIPE.Enc,

HRIPE.TokenGen, HRIPE.Query} and is shown as follows.
• HRIPE.Setup(∆, w): Given ∆ = {T1, T2, · · · , Td} and

the number of dummy dimensions w (w ≥ 2), the setup
algorithm outputs a random invertible matrix M ∈ Rθ×θ as a
secret key, where θ = 2

∑d
i=1 Ti+1+w, and a d-dimensional

lattice L∆.
• HRIPE.Enc(R′, M, L∆): On input of a hyper-rectangle

R′={(R′1, R′2, · · · , R′d)|R′i = [R′il, R
′
iu]}, the secret key M, and

the lattice L∆, the encryption algorithm first encodes R′ into
a new θ-dimensional vector:

R̃′ = (reγ(R′1), reγ(R′2), · · · , reγ(R′d),−re, r1
R, · · · , rwR ),

where re and r
p
R (1 ≤ p ≤ w) ∈ R+ are ran-

dom real numbers satisfying re >
∑w
p=1 r

p
R , and

γ(R′i) = (0, · · · , 0︸ ︷︷ ︸
R′il−1

, 1, 0, · · · , 0︸ ︷︷ ︸
Ti−R′il

, 0, · · · , 0︸ ︷︷ ︸
R′iu−1

, 1, 0, · · · , 0︸ ︷︷ ︸
Ti−R′iu

) is a 2Ti-

dimensional vector, i.e.,

γ(R′i)j∈[1,2Ti] =

{
1 if j = R′il or j = R′iu + Ti

0 Otherwise,
(4)

Then, the algorithm outputs the ciphertext of R′, denoted
as ||R′||, where ||R′|| = HRIPE.Enc(R′,M,L∆) = R̃′ M.
• HRIPE.TokenGen(R, M, L∆): Taking a query hyper-

rectangle R = {(R1, R2, · · · , Rd) | Ri = [Ril, Riu]}, the secret
key M, and the lattice L∆ as inputs, the token generation
algorithm can output a query token 〈qh〉. First, the algorithm
encodes R into a θ-dimensional query vector:

q̃h = (rtδ(R1), rtδ(R2), · · · , rtδ(Rd), 2d · rt, r1
q, · · · , rwq ),

where rt and rpq (1 ≤ p ≤ w) ∈ R+ are random
real numbers satisfying rt >

∑w
p=1 r

p
q , and δ(Ri) =

(1, 1, · · · , 1︸ ︷︷ ︸
Riu

, 0, 0, · · · , 0, 1, 1, · · · , 1︸ ︷︷ ︸
Ti−Ril+1

) is a 2Ti-dimensional vec-

tor, i.e.,

δ(Ri)j∈[1,2Ti] =


1 if j ∈ [1, Riu]

or j ∈ [Ril + Ti, 2Ti]

0 Otherwise
(5)

Then, the algorithm outputs a query token 〈qh〉 =
HRIPE.TokenGen(R, M, L∆) = q̃h(M−1)T .
• HRIPE.Query(||R′||, 〈qh〉): On input of an encrypted

hyper-rectangle ||R′|| and a query token 〈qh〉, this algorithm
calculates the inner product between ||R′|| and 〈qh〉 and
outputs true iff ||R′|| ◦ 〈qh〉 > 0, and false otherwise.

Correctness. We say the HRIPE scheme is correct if one
can determine whether two hyper-rectangles are intersected
by observing the result of the HRIPE.Query algorithm,
namely, if the result is true, R∩R′ 6= ∅, otherwise R∩R′ = ∅.
To save space, we do not show the detailed proof since it is
similar to the MPRPE scheme.

4.3 MPDPE
To provide the user-defined skyline query services, the other
essential operation is to check whether a point is dominated
by another point. Although it is simple to determine the
dominating relations over plaintexts, checking the dominat-
ing relations over encrypted data is still challenging. To ad-
dress it, we propose a Multi-dimensional Point Dominating
Predicate Encryption (MPDPE) scheme to check dominance
over encrypted data points. Considering the second query
condition in the user-defined skyline query (Definition 3),
we construct a query vector qs = (q1s, q

2
s, · · · , qds ) to allow

query users to dynamically determine which dimensions are
selected and the corresponding preferences, where

qi∈[1,d]
s =

1 if ith-dimension is chosen and prefer max
−1 if ith-dimension is chosen and prefer min
0 if ith-dimension is not chosen.
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With the constructed query vector qs, we present our
MPDPE scheme,

∏
MPDPE={MPDPE.Setup, MPDPE.Enc,

MPDPE.TokenGen, MPDPE.Query}, as follows.
• MPDPE.Setup(∆, w): Given ∆ = {T1, T2, · · · , Td} and

the number of dummy dimensions w (w ≥ 2), the setup al-
gorithm outputs two random invertible matrices M ∈ Rθ×θ

and M̃ ∈ Rθ×θ as secret keys, where θ =
∑d
i=1 Ti+3d+1+w,

and a d-dimensional lattice L∆.
• MPDPE.Enc(x, M, M̃, L∆): The encryption algorithm

takes a d-dimensional point x, the secret keys {M, M̃}, and
the lattice L∆ as inputs. First, the algorithm encodes the
point x = (x1, x2, · · · , xd) into two new θ-dimensional
vectors: x̂ and x̃.

x̂ =(reα(x1), reα(x2), · · · , reα(xd),

re′ζ(x1), re′ζ(x2), · · · , re′ζ(xd),−re,−r1
x, · · · ,−rwx ),

where re, re′ , and rpx (1 ≤ p ≤ w) ∈ R+ are random real
numbers satisfying re > re′ ·

∑d
i=1 Ti

2 and re′ >
∑w
p=1 r

p
x .

Meanwhile, α(xi) is defined as Eq. (1), and ζ(xi) is a 3-
dimensional vector, i.e., ζ(xi) = (xi

2
,−2xi, 1). Note that

xi
2

= xi · xi.

x̃ =(rsη(x1), rsη(x2), · · · , rsη(xd),

rsξ(x
1), rsξ(x

2), · · · , rsξ(xd),−rz, rz, · · · , rz︸ ︷︷ ︸
w

),

where rs and rz ∈ R+ are random real numbers, η(xi) =
(0, 0, · · · , 0︸ ︷︷ ︸

xi−1

, 1, 1, · · · , 1︸ ︷︷ ︸
Ti−xi+1

) is a Ti-dimensional vector, i.e.,

η(xi)j∈[1,Ti] =

{
1 if j ∈ [xi , Ti]

0 Otherwise,
(6)

and ξ(xi) = (1, xi, xi
2
). Then, the algorithm outputs two

ciphertexts of x, denoted as ||x||L (left ciphertext) and ||x||R
(right ciphertext), by respectively encrypting x̂ and x̃ with
the secret keys M and M̃, i.e., (||x||L, ||x||R) = MPDPE.Enc(x,
M, M̃, L∆). Specifically, ||x||L = x̂ M and ||x||R = x̃ M̃.
• MPDPE.TokenGen(qs, M, M̃, L∆): The token gener-

ation algorithm takes a preference query vector qs, the
secret keys {M̃,M}, and the lattice L∆ as inputs. First, the
algorithm encodes the query vector qs into a θ × θ query
matrix Q as follows.

Step-1. Generate a (w + 1) × θ random matrix RM that
satisfies:

RMi,j =


ri,j i ∈ [2, w + 1], j ∈ [1, θ];
w+1∑
i=2

ri,j i = 1, j ∈ [1, θ],
(7)

where ri,j ∈ R are random numbers.
Step-2. Generate a (θ−w− 1)× (w+ 1) padding matrix

P that is constructed by

Pi,j =


k · rp if i = θ − 3d− w − 1, j = 1;

rjq if i = θ − 3d− w − 1, j ∈ [2, w + 1];

0 Otherwise,

where k=
∑d
i=1 |qis|, and rp, rjq ∈ R+ are random real

numbers satisfying rp >
∑w+1
j=2 rjq.

Step-3. Extend the vector qs=(q1s, q
2
s, · · · , qds ) to a set of

mask matrices Qs=(Q1
s ,Q

2
s , · · · ,Qd

s ). For any matrix Qi
s (1 ≤

i ≤ d), it has the size of Ti × Ti and can be constructed as
follows:

Qi
s =


I if qis = 1

Vi if qis = −1

O if qis = 0,

where I is an identity matrix, O is a zero matrix, and Vi has
the size of Ti × Ti and satisfies:

Vim,n =


−1 if m ∈ [1, Ti − 1], n = m+ 1

1 if m = Ti, n ∈ [1, Ti]

0 Otherwise,

Step-4. Extend the vector qs=(q1s, q
2
s, · · · , qds ) to a set of

mask matrices Qs′=(Q1
s′ ,Q

2
s′ , · · · ,Qd

s′). For any matrix Qi
s′

(1 ≤ i ≤ d), it has the size of 3 × 3 and can be constructed
as follows:

Qi
s′ =

{
I if qis = 1 or − 1

O if qis = 0,

Step-5. Construct the θ × θ query matrix Q with the
aforementioned RM, P, Qs, and Qs′ :

Q =



rpQ
1
s · · · O O · · · O

...
. . .

...
...

. . .
...

O · · · rpQd
s O · · · O

O · · · O rp′Q
1
s′ · · · O

...
. . .

...
...

. . .
...

O · · · O O · · · rp′Qd
s′

P

RMi,[1,θ−w−1] RMi,[θ−w,θ]


(8)

where rp is a random number generated in step-2, and rp′

is a random real number satisfying rp > rp′ ·
∑d
i=1 Ti

2

and rp′ >
∑w+1
j=2 rjq . Then, the token generation algorithm

outputs a query token 〈qs〉 = MPDPE.TokenGen(qs, M, M̃,
L∆) = M̃

−1
Q(M−1)T .

• MPDPE.Query(||xt||L, ||xs||R, 〈qs〉): On input of xt’s
left ciphertext ||xt||L, xs’s right ciphertext ||xs||R (t 6= s),
and a query token 〈qs〉, the query algorithm outputs true iff
||xt||L ◦ (||xs||R · 〈qs〉) > 0, and false otherwise.

Correctness. We say the MPDPE scheme is correct if one
can determine whether xt ≺B xs by observing the result of
the MPDPE.Query algorithm: if the result is true, xt ≺B xs,
otherwise xt 6≺B xs. We show the proof as follows.

Proof. Given ||xt||L, ||xs||R and 〈qs〉, the MPDPE.Query al-
gorithm runs ||xt||L ◦ (||xs||R · 〈qs〉):

||xt||L ◦ (||xs||R · 〈qs〉) = (x̂tM) ◦ (x̃sM̃M̃
−1

Q(M−1)T )

= x̂tMM−1(x̃sQ)T = x̂t(x̃sQ)T
(9)
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Let x̃sQ = x̃sq = (ε1, ε2, · · · , εd, τ1, τ2, · · · , τd, ρ0, ρ1, · · · , ρw).
Since (−rz, rz, · · · , rz︸ ︷︷ ︸

w

) · RM = (0, 0, ..., 0), we have:



εµ = rsrp · η(xµs ) · Qµs
τµ = rsrp′ · ξ(xµs ) · Qµs′
ρ0 = rsrp · k · η(xds )Td
ρ1 = rsr

2
q · η(xds )Td

...
...

ρw = rsr
w+1
q · η(xds )Td ,

(10)

where 1 ≤ µ ≤ d. Since xµs ≤ Tµ (see Definition 4),
we always have η(xµs )Tµ = 1 according to Eq. (6). Thus,
η(xds )Td = 1. Consequently, from Eq. (10), we have:

x̃sq = (ε1, ε2, · · · , εd, τ1, τ2, · · · , τd, ρ0, ρ1, · · · , ρw)

= rs(rp · η(x1s) · Q1
s , · · · , rp · η(xds ) · Qd

s , rp′ · ξ(x1s) · Q1
s′ ,

· · · , rp′ · ξ(xds ) · Qd
s′ , k · rp, r2

q, · · · , rw+1
q ),

where

η(xµs ) · Qµs =


η(xµs ) if qµs = 1

η(xµs ) · Vµ if qµs = −1

O if qµs = 0,

(11)

and

ξ(xµs ) · Qµs′ =

{
ξ(xµs ) if qµs = 1 or − 1

O if qµs = 0.
(12)

Furthermore, we can obtain:

η(xµs ) · Vµ = (η(xµs )Tµ , η(xµs )Tµ − η(xµs )1,

η(xµs )Tµ − η(xµs )2, · · · , η(xµs )Tµ − η(xµs )(Tµ−1))

= (1, 1− η(xµs )1, 1− η(xµs )2, · · · , 1− η(xµs )(Tµ−1)).

Let η′(xµs ) = η(xµs ) · Vµ, we have the following equation
according to Eq. (6):

η′(xµs )j∈[1,Ti] =

{
1 if j ∈ [1, xµs ]

0 Otherwise.
(13)

Recall Eq. (9), we can obtain:

||xt||L ◦ (||xs||R · 〈qs〉) = x̂t(x̃sQ)T = x̂t(x̃sq)
T

= rsrerp(
d∑

µ=1

α(xµt )(η(xµs )Qµs )T − k)

+ rsre′rp′
d∑

µ=1

ζ(xµt )(ξ(xµs )Qµs′)
T

− rs

w∑
i=1

rixr
i+1
q .

(14)
From Eq. (1), Eq. (11), and Eq. (13), we have
α(xµt )(η(xµs )Qµs )T = 1, only when the µ-th dimension is
chosen, and x

µ
t ≤ xµs (xµt ≥ xµs ) satisfies the user-

defined preference, otherwise α(xµt )(η(xµs )Qµs )T = 0. If∑d
µ=1 α(xµt )(η(xµs )Qµs )T ≤ k − 1, it means ∃xµt does not

satisfy the user-defined preference. Since re > re′ ·
∑d
i=1 Ti

2

and rp > rp′ ·
∑d
i=1 Ti

2, we have ||xt||L ◦ (||xs||R · 〈qs〉) <
0 ⇒ xt 6≺B xs. Furthermore, If each dimension satisfies
x
µ
t ≤ xµs (xµt ≥ xµs ), rsrerp(

∑d
µ=1 α(xµt )(η(xµs )Qµs )T − k) =

0. In this case, if ∃xµt satisfies x
µ
t < xµs (xµt > xµs ),

rsre′rp′
∑d
µ=1 ζ(xµt )(ξ(xµs )Qµs′)

T > 0. Since re′ >
∑w
p=1 r

p
x

and rp′ >
∑w+1
j=2 rjq, we have ||xt||L ◦ (||xs||R · 〈qs〉) > 0 ⇒

xt ≺B xs. Thus, ||xt||L ◦ (||xs||R · 〈qs〉) > 0⇔ xt ≺B xs.

4.4 The Description of Our Proposed Scheme
In this section, based on the above predicate encryption
primitives, we present our privacy-preserving user-defined
skyline query scheme, which mainly includes five phases: 1)
System Initialization; 2) Local Data Outsourcing; 3) Query
Token Generation; 4) User-defined Skyline Search; 5) Origi-
nal Data Recovery.

4.4.1 System Initialization
In our scheme, the data owner O is responsible for initializ-
ing the whole system. Assume that the data owner holds a
n-record dataset X = {xi = (x1

i , x
2
i , · · · , xdi ) | 1 ≤ i ≤ n},

and each data record is a d-dimensional point. First, the
data owner chooses a secure hash function H(), e.g., SHA-
256, and a secure symmetric key encryption SE(), i.e., AES-
128, and publishes them {H(), SE()} with w (the number
of dummy dimensions) as system parameters. Second, the
data owner collects ∆ = {T1, T2, · · · , Td} and generates a
d-dimensional lattice L∆ for the dataset X . Finally, the data
owner generates a master key k0 and a secret key sk:
• k0 is randomly generated and sent to the cloud via a

secure channel.
• sk = {M,M′, M̃} is used to encrypt the data records

and R-tree, where M′ = HRIPE.Setup(∆, w) and (M, M̃) =
MPDPE.Setup(∆, w).

After that, if a query user ui would like to enjoy the user-
defined skyline query services, he/she should first register
to the data owner with his/her identity IDi. If accepted, the
data owner will first generate a shared key ki = H(k0|IDi)
for the query user ui. Then, the data owner O authorizes
{sk, ki, L∆} to the query user ui through a secure channel.

4.4.2 Local Data Outsourcing
To guarantee efficiency and privacy for searching skylines,
before outsourcing the dataset X to the cloud server S , the
data owner prepares the data with the following two steps:

Step-1. Build an R-tree over X , denoted as Γ.
Step-2. Encrypt the R-tree Γ into E(Γ) with the secret key

sk = {M,M′, M̃}. Specifically, for internal nodes, i.e., MBRs,
they are encrypted into ||R′|| = HRIPE.Enc(R′, M′, L∆)
with M′. For leaf nodes, each leaf node x ∈ X is encrypted
into two ciphertexts (||x||L, ||x||R) = MPDPE.Enc(x, M, M̃,
L∆), where ||x||L = x̂ M and ||x||R = x̃ M̃.

After the above two steps, the data owner outsources the
encrypted R-tree E(Γ) to the cloud server S .

In order to reduce the number of outsourced ciphertexts,
we will use ||x||L instead of the ciphretext generated by
MPRPE.Enc(x, M, L∆) to check whether a point lies inside
a rectangle.

4.4.3 Token Generation
To obtain the desired skyline points, the query user ui
should first generate query tokens as follows.

Step-1. Construct a query rectangle R =
{(R1, R2, · · · , Rd) | Rµ = [Rµl, Rµu], 1 ≤ µ ≤ d}. If the
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µ-th dimension is ignored, the corresponding range Rµ is
set from 1 to Tµ.

Step-2. Construct a query vector qs = (q1s, q
2
s, · · · , qds )

according to user’s preferences.
Step-3. Based on the query rectangle R and query

vector qs, the query user generates three query tokens
{〈q〉, 〈qh〉, 〈qs〉}, where

〈q〉 = MPRPE.TokenGen(R,M,L∆)

〈qh〉 = HRIPE.TokenGen(R,M′,L∆)

〈qs〉 = MPDPE.TokenGen(qs,M, M̃,L∆).

(15)

Note that, here 〈q〉 is a θ =
∑d
i=1 Ti+3d+1+w-dimensional

vector, as we extend q̃ in our MPRPE.TokenGen(R,M,L∆)
algorithm as follows:

q̃ = (rtβ(R1), rtβ(R2), · · · , rtβ(Rd), 0, · · · , 0︸ ︷︷ ︸
3d

, d · rt, r1q , · · · , rwq ).

After generating query tokens, the query user ui
will encrypt these tokens with the shared key ki:
SE(〈q〉|〈qh〉|〈qs〉|ts, ki), in which ts is the time stamp.
Finally, the query user sends the query request: Req=
{IDi, ts, SE(〈q〉|〈qh〉|〈qs〉|ts, ki)}, to the cloud server.

Upon receiving Req, the cloud server will extract IDi
and calculate the shared key with the authorized master
key: ki = H(k0|IDi). Next, by decrypting SE(〈q〉|〈qh〉|〈qs〉|ts,
ki) with ki, the cloud server recovers the query tokens
{〈q〉, 〈qh〉, 〈qs〉} and time stamp ts. With the decrypted ts,
the cloud server checks whether it is the same as the time
stamp extracted from Req. If yes, the query request Req will
be further processed, and rejected otherwise.

4.4.4 User-defined Skyline Search
Once accepting the query request from query user ui, with
these query tokens {〈q〉, 〈qh〉, 〈qs〉}, the cloud server can
run the user-defined skyline search algorithm over the en-
crypted R-tree E(Γ). The encrypted R-tree contains the en-
crypted MBR ||R′|| for each internal node and (||x||L, ||x||R)
for each leaf node. Here, we employ the BNL algorithm (in-
troduced in Section 3.2) to retrieve skyline points. Typically,
the cloud server can conduct the following steps to obtain
the desired skyline points (see details in Algorithm 1).

Step-1. Perform range query on E(Γ) to obtain the points
inside the user-defined query rectangle. First, the cloud
server traverses E(Γ) to determine whether the query rect-
angle intersects with the internal nodes. It can be achieved
by executing HRIPE.Query(||R′||, 〈qh〉). When reaching the
leaf nodes, the cloud server runs MPRPE.Query(||x||L, 〈q〉)
to check whether the point lies inside the query rectangle. If
yes, the point is added into a set, denoted as Sp. This step is
depicted from lines 12-21 in Algorithm 1.

Step-2. Find skyline points in Sp. In order to obtain the
skyline points, the cloud server needs to find the points in Sp
that are not dominated by any other point in the set. Using
our MPDPE scheme, the cloud server can check whether
xt ≺B xs by executing MPDPE.Query(||xt||L, ||xs||R, 〈qs〉).
After checking the dominating relations for all points in Sp,
the cloud server can find skyline points and add them into
a set S. See details from lines 4-10 in Algorithm 1.

Before returning the retrieved skyline points to the query
user ui, the cloud server encrypts them by the shared key

Algorithm 1 User-defined Skyline Search over Ciphertexts
Input: An encrypted R-tree, E(Γ); three query tokens, {〈q〉, 〈qh〉, 〈qs〉}.
Output: A set containing encrypted skyline points, S;
1: root← E(Γ).getRoot();
2: Create an empty set Sp ← ∅;
3: rangeQuery(root, 〈q〉, 〈qh〉,Sp)
4: for each node np of Sp do
5: for each node ns of S do
6: if ||xns ||L ◦ (||xnp ||R · 〈qs〉) > 0 then
7: Break;
8: if ||xnp ||L ◦ (||xns ||R · 〈qs〉) > 0 then
9: S.remove(ns);

10: S.add(np);
11:
12: function rangeQuery(node, 〈q〉, 〈qh〉, Sp)
13: if node is leaf then
14: ||x||L ← node’s left ciphertext;
15: if ||x||L ◦ 〈q〉 > 0 then
16: Sp.add(node);
17: else
18: ||R′|| ← node.MBR();
19: if ||R′|| ◦ 〈qh〉 > 0 then
20: for each childNode of node do
21: rangeQuery(childNode, 〈q〉, 〈qh〉, Sp);

ki: SE(S|ts, ki), where ts is a new time stamp. Finally, the
cloud server sends {ts, SE(S|ts, ki)} to the query user ui.

4.4.5 Original Data Recovery
After receiving the query response, the query user ui uses
the authorized shared key ki to obtain the encrypted time
stamp ts and the set S in which the skyline points are
encrypted by our predicate encryption. First, ui verifies
whether the external ts is consistent with the encrypted ts.
If yes, the query response will be accepted, and dropped
otherwise. Then, with the secret key sk = {M,M′, M̃}, the
query user can recover each point x ∈ S: i) with M, the query
user can obtain x̂ by calculating ||x||LM−1 = x̂ M M−1 = x̂;
ii) it is simple to remove re from x̂ and recover the point x
by Eq. (1) since the elements of α(xi) are 0 or 1.

5 SECURITY ANALYSIS

In this section, we will analyze the security of the pro-
posed user-defined skyline query scheme. Since our scheme
is built on three predicate encryption primitives, namely,
MPRPE, HRIPE, and MPDPE, we first prove the security
of these predicate encryption primitives, and then analyze
the security of our user-defined skyline query scheme. Note
that, since HRIPE can be treated as applying MPRPE in the
2d-dimensional point, the security proof of HRIPE is the
same as that of MPRPE. Therefore, for space saving, we
only provide the detailed security analysis of MPRPE and
MPDPE in this section.

5.1 Security of MPRPE

Our MPRPE scheme is designed to support the multi-
dimensional range query over ciphertexts. As the same
as the security analysis of other searchable encryption
schemes [24], [25], we prove that our MPRPE scheme is
selectively secure in the real/ideal world security model.
Specifically, the real world is our proposal, while the ideal
world is an ideal function with some leaked information,
which is related to the public information in our proposal
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and defined as a leakage function. In addition, in the ideal
world, the adversary can select queries according to the
previous query tokens and query results. We will prove
that the real world of our proposal is indistinguishable
from the ideal world, which means that our scheme can
guarantee security when the queries are not independent
of the previous query materials. Before delving into the
detailed proof, we first define the trivial leakage function,
denoted as L, of our MPRPE scheme. Assume that ||x||
is the ciphertext of a d-dimensional point x, and 〈q〉 is
the ciphertext of a d-dimensional query rectangle R. The
leakage function of our MPRPE is the inner product result
between ||x|| and 〈q〉, i.e., L = dot(||x||, 〈q〉). Based on the
leakage L, we run the ideal experiment as follows.

Ideal experiment. The ideal experiment involves two
participants: a probabilistic polynomial time adversary A
and a simulator with the leakage L. They interact as follows.
• Setup. A chooses p1 d-dimensional database records

{xi}p1i=1 and transfers them to the simulator. On receiving
them, the simulator randomly generates p1 θ-dimensional
vectors {||xi||′}p1i=1 as the ciphertexts of {xi}p1i=1.
• Token generation phase 1. In this phase, A randomly

chooses p2 d-dimensional query rectangles {Ri}p2i=1, and
sends them to the simulator. After receiving {Ri}p2i=1, the
simulator uses the leakage L and {||xi||′}p1i=1 (generated
in the setup phase of ideal experiment) to construct the
ciphertexts of {Ri}p2i=1 and returns them to A. We denote
these ciphertexts as {〈qi〉′}p2i=1. For each Ri, the simulator
generates the corresponding ciphertext 〈qi〉′ as follows.

Step 1. The simulator generates a vector Vi with p1

length, in which each element rj (1 ≤ j ≤ p1) is a random
real number and satisfies the leakage L. That is:{

rj > 0, if ||xj || ◦ 〈qj〉 > 0

rj < 0, if ||xj || ◦ 〈qj〉 < 0.
(16)

Step 2. The simulator randomly chooses a vector 〈qi〉′
satisfying the following equation system. ||x1||

′

...
||xp1 ||′

 (〈qi〉′)T = VTi .

• Challenge phase. In the challenge phase, the simulator
sends {||xi||′}p1i=1 to A.
• Token generation phase 2. In the token generation

phase 2, A continues to generate p′2 − p2 d-dimensional
query rectangles {Ri}

p′2
i=p2+1, and sends them to the sim-

ulator. Once receiving {Ri}
p′2
i=p2+1, the simulator adopts the

same steps to obtain {〈qi〉′}
p′2
i=p2+1 and sends them to A.

As the real experiment is our proposal, the view of A in
the real experiment is ViewA,Real = {{||xi||}p1i=1, {〈qi〉}

p′2
i=1}

that can be generated by our MPRPE scheme. While, in
the ideal experiment, the view of A is ViewA,Ideal =

{{||xi||′}p1i=1, {〈qi〉′}
p′2
i=1} as shown in the above experiment.

Based on the views of A, we define the security of MPRPE.

Definition 6 (Security of MPRPE). MPRPE is selectively
secure with the leakage L iff for any probabilistic polynomial
time adversary A issuing a polynomial number of database
records encryption and query token generations, there exists

a simulator such that the advantage that A can distinguish
the views of real and ideal experiments is negligible. That is,
|Pr[ViewA,Real = 1]− Pr[ViewA,Ideal = 1]| is negligible.

Theorem 1. MPRPE is selectively secure with L.

Proof. According to Definition 6, MPRPE is se-
lectively secure with L iff A cannot distinguish
ViewA,Real ={{||xi||}p1i=1, {〈qi〉}

p′2
i=1} and ViewA,Ideal =

{{||xi||′}p1i=1, {〈qi〉′}
p′2
i=1}. To prove the indistinguishability,

we consider two cases: 1) the ciphertexts {||xi||}p1i=1 are
indistinguishable from {||xi||′}p1i=1; 2) the query tokens
{〈qi〉}

p′2
i=1 are indistinguishable from {〈qi〉′}

p′2
i=1.

• {||xi||}p1i=1 are indistinguishable from {||xi||′}p1i=1.
In the real experiment, ||xi|| = x̃iM, where x̃i =
(reα(x1

i ), reα(x2
i ), · · · , reα(xdi ),−re, r1

x, · · · , rwx ). Since
each ciphertext ||xi|| contains at least three random
numbers {re, r1

x, · · · , rwx | w ≥ 2}, and the random matrix
M is unknown for A, {||xi||}p1i=1 are indistinguishable from
random vectors. Since {||xi||′}p1i=1 are randomly generated
in the ideal experiment, {||xi||}p1i=1 are indistinguishable
from {||xi||′}p1i=1.

• {〈qi〉}
p′2
i=1 are indistinguishable from {〈qi〉′}

p′2
i=1. In

the real experiment, 〈qi〉 is generated by q̃(M−1)T , where
q̃ =(rtβ(R1), rtβ(R2), · · · , rtβ(Rd), d · rt, r1

q, · · · , rwq ). Since
each query token 〈qi〉 has at least three random numbers
{rt, r1

q, · · · , rwq | w ≥ 2}, and M−1 is unknown for A,

{〈qi〉}
p′2
i=1 are indistinguishable from random vectors. In the

ideal experiment, each query token 〈qi〉′ is restricted by the
leakage L. However, from Eq. (3), we know that the results
of ||xj || ◦ 〈qj〉 are random, leading to random rj in Eq. (16).
Therefore, {〈qi〉′}

p′2
i=1 are indistinguishable from random

vectors under the randomly chosen ciphertexts {||xi||′}p1i=1.
Thus, {〈qi〉}

p′2
i=1 are indistinguishable from {〈qi〉′}

p′2
i=1.

As a result, we can deduce that ViewA,Real is indistin-
guishable from ViewA,Ideal, and A cannot distinguish the
views of real and ideal experiments of MPRPE scheme.
Thus, MPRPE is selectively secure with the leakage L.

5.2 Security of MPDPE

Our MPDPE scheme is designed to check the dominating
relation between two encrypted data points. Similar to
the security of MPRPE, in this section, we prove that our
MPDPE scheme is selectively secure in the real/ideal world
security model. Assume that ||xt||L is xt’s left ciphertext,
||xs||R (s 6= t) is xs’s right ciphertext, and 〈qs〉 is a query to-
ken generated by MPDPE.TokenGen. The leakage function
of the MPDPE scheme is the result of ||xt||L ◦ (||xs||R · 〈qs〉),
denoted as L̃ = dotMul(||xt||L, ||xs||R, 〈qs〉). Based on the
leakage L̃, we run the ideal experiment as follows.

Ideal experiment. The ideal experiment involves a prob-
abilistic polynomial time adversary A and a simulator with
the leakage L̃, and they interact as follows.
• Setup. A chooses p1 d-dimensional database records

{xi}p1i=1 and transfers them to the simulator. Once receiving
them, the simulator randomly generates p1 θ-dimensional
vectors {||xi||′L}

p1
i=1 and {||xi||′R}

p1
i=1 as the MPDPE cipher-

texts of {xi}p1i=1.
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• Token generation phase 1. A randomly chooses p2

preference vectors {qsi}
p2
i=1, and sends them to the simu-

lator. The simulator uses the leakage L̃, {||xi||′L}
p1
i=1, and

{||xi||′R}
p1
i=1 to construct the ciphertexts of {qsi}

p2
i=1 and re-

turns them to A. We denote these ciphertexts as {〈qsi 〉′}
p2
i=1.

For each qsi , the simulator generates the corresponding
ciphertext 〈qsi 〉′ by the following steps:

Step 1. The simulator generates a p1 × p1 matrix Si, in
which each element rii,i2 (1 ≤ i1, i2 ≤ p1) is a random real
number and satisfies the leakage L̃. That is:{

rii,i2 > 0, if ||xi1 ||L ◦ (||xi2 ||R · 〈qsi 〉) > 0

rii,i2 < 0, if ||xi1 ||L ◦ (||xi2 ||R · 〈qsi 〉) < 0.
(17)

Step 2. The simulator randomly chooses a vector 〈qsi 〉′
satisfying the following equation system. ||x1||

′
L

...
||xp1 ||′L

 ◦

 ||x1||

′
R

...
||xp1 ||′R

 · 〈qsi 〉′
 = Si.

• Challenge phase. The simulator sends {||xi||′L}
p1
i=1 and

{||xi||′R}
p1
i=1 to A.

• Token generation phase 2. A continues to gener-
ate preference vectors {qsi}

p′2
i=p2+1 and sends them to the

simulator. The simulator adopts the same steps to obtain
{〈qsi 〉′}

p′2
i=p2+1 and sends them to A.

As the real experiment is our proposal, the
view of A in the real experiment is ViewA,Real =

{{||xi||L}p1i=1, {||xi||R}
p1
i=1, {〈qsi 〉}

p′2
i=1} that can be generated

by our MPDPE scheme. In the ideal experiment, the view
of A is ViewA,Ideal = {{||xi||′L}

p1
i=1, {||xi||′R}

p1
i=1, {〈qi〉′}

p′2
i=1}

as shown in the above experiment. Based on the views of
A, we define the security of MPDPE.

Definition 7 (Security of MPDPE). MPDPE is selectively
secure with the leakage L̃ iff for any probabilistic polynomial time
adversary A issuing a polynomial number of database records
encryption and query token generations, there exists a simulator
such that the advantage that A can distinguish the views of real
and ideal experiments is negligible. That is, |Pr[ViewA,Real =
1]− Pr[ViewA,Ideal = 1]| is negligible.

Theorem 2. MPDPE is selectively secure with L̃.

Proof. According to Definition 7, MPDPE is selectively
secure with L̃ iff A cannot distinguish ViewA,Real =

{{||xi||L}p1i=1, {||xi||R}
p1
i=1, {〈qsi 〉}

p′2
i=1} and ViewA,Ideal =

{{||xi||′L}
p1
i=1, {||xi||′R}

p1
i=1, {〈qi〉′}

p′2
i=1}. Since all ciphertexts

and query tokens in the ideal experiment are random
generated, distinguishing ViewA,Real from ViewA,Ideal is
equivalent to distinguishing ViewA,Real from random ci-
phertexts and random query tokens. Here we consider the
following three cases: 1) the ciphertexts {||xi||L}p1i=1 and
{||xi||R}p1i=1 are indistinguishable from random ciphertexts;
2) the query tokens {〈qsi 〉}

p′2
i=1 are indistinguishable from

random query tokens; 3) the intermediate results computed
from {||xi||R}p1i=1 and {〈qsi 〉}

p′2
i=1 are indistinguishable from

random vectors.

• {||xi||L}p1i=1 and {||xi||R}p1i=1 are indistinguishable from
random ciphertexts. In the MPDPE.Enc algorithm, ||xi||L =
x̂iM and ||xi||R = x̃iM̃, where

x̂i =(reα(x1
i ), reα(x2

i ), · · · , reα(xdi ), re′ζ(x1
i ),

re′ζ(x2
i ), · · · , re′ζ(xdi ),−re,−r1

x, · · · ,−rwx ) and

x̃i =(rsη(x1
i ), rsη(x2

i ), · · · , rsη(xdi ), rsξ(x
1
i ),

rsξ(x
2
i ), · · · , rsξ(xdi ),−rz, rz, · · · , rz).

Since both ||xi||L and ||xi||R contain at least two types of
random numbers, for example re and rx in ||xi||L, and
the random matrix M and M̃ are unknown for A, ||xi||L
and ||xi||R are indistinguishable from random vectors. Thus,
{||xi||L}p1i=1 and {||xi||R}p1i=1 are indistinguishable from ran-
dom ciphertexts.
• {〈qsi 〉}

p′2
i=1 are indistinguishable from random query

tokens. In the MPDPE.TokenGen algorithm, 〈qs〉 =

M̃
−1

Q(M−1)T . According to Eq. (8), Q contains a ran-
dom matrix RM. Also, there exists random real numbers
{rp, rp′ , rjq | 2 ≤ j ≤ w + 1}, and both M̃

−1
and M−1

are unknown for A. Therefore, each query token 〈qsi 〉 is
indistinguishable from a random matrix. Thus, {〈qsi 〉}

p′2
i=1

are indistinguishable from random query tokens.
• The intermediate results computed from {||xi||R}p1i=1

and {〈qsi 〉}
p′2
i=1 are indistinguishable from random vectors.

In the real experiment, A may compute ||xi||R · 〈qsi 〉 to
obtain intermediate results, i.e., ||xi||R · 〈qsi 〉 = x̃iQ(M−1)T ,
where x̃iQ = rs(rp · η(x1

i ) · Q1
s , · · · , rp · η(xdi ) · Qd

s , rp′ ·
ξ(x1

i ) · Q1
s′ , · · · , rp′ · ξ(xdi ) · Qd

s′ , k · rp, r2
q, · · · , rw+1

q ). Since
each intermediate result contains many random numbers
{rs, rp, rp′ , r1

q, · · · , rwq |w ≥ 2}, and M−1 is unknown forA.
Therefore, each intermediate result is indistinguishable from
a random vector. Thus, the intermediate results computed
from {||xi||R}p1i=1 and {〈qsi 〉}

p′2
i=1 are indistinguishable from

random vectors.
As a result, we can deduce that ViewA,Real is indistin-

guishable from ViewA,Ideal, and A cannot distinguish the
views of real and ideal experiments of MPDPE scheme.
Thus, MPDPE is selectively secure with the leakage L̃.

5.3 Security of User-defined Skyline Query Scheme
In this subsection, we analyze the security of our user-
defined skyline query scheme. Recalling our security model,
we consider that the cloud server is honest-but-curious, who
may be curious about the plaintext of data records, query
requests, and query results. Since we focus on privacy-
preserving properties, we will show that these values are
privacy-preserving in the cloud server.
• The data records are privacy-preserving. The out-

sourced data records should be kept secret from the cloud
server. In our scheme, one data record x ∈ X will be en-
crypted into two ciphertexts (||x||L, ||x||R) = MPDPE.Enc(x,
M, M̃, L∆). As proved in Section 5.2, the security of MPDPE
can guarantee that the cloud server cannot obtain the plain-
texts of data records from their ciphertexts. Meanwhile, the
cloud server may try to deduce the plaintexts of data records
when performing the user-defined skyline queries. First,
the cloud server can compute ||x||R · 〈qs〉 = x̃Q(M−1)T .
Since the cloud server has no idea about the secret M−1, it
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even cannot obtain x̃Q. Second, the cloud server can further
run MPRPE.Query and MPDPE.Query to obtain the inner
product of data records and query requests. However, each
inner product result contains many random numbers (see
Eq. (3) and Eq. (14)). Therefore, the cloud server cannot
recover the data records from inner product results. Finally,
the cloud server can know which data records are retrieved
as skyline points and deduce the plaintexts of data records
according to the dominating relations. However, in our
scheme, the cloud server neither knows which dimensions
are selected nor what are the preferences of selected dimen-
sions. Therefore, the cloud server cannot infer the plaintexts
of data records by the dominating relations. Thus, the data
records are privacy-preserving in our scheme.
• The query requests and query results are privacy-

preserving. The query requests and query results should
be kept secret from the cloud server. In our scheme, there
are three query tokens, i.e., {〈q〉, 〈qh〉, 〈qs〉}, for the query
request {R, qs}. According to Eq. (15), R is encrypted
by MPRPE.TokenGen and HRIPE.TokenGen, while qs is
encrypted by MPDPE.TokenGen. Therefore, the security of
MPRPE, HRIPE and MPDPE can guarantee that the cloud
server cannot deduce any plaintext information of R and
qs from these query tokens. Besides, in the process of the
user-defined skyline queries, the cloud server may infer the
query requests with the inner product results obtained from
MPRPE.Query, HRIPE.Query, and MPDPE.Query. How-
ever, each inner product result is protected by many random
real numbers, and the cloud server has no idea about
the data record x. Therefore, the cloud cannot recover the
plaintexts of query requests from inner product results. In
our scheme, the cloud server returns the ciphertexts of data
records to the query users. As discussed previously, the
cloud server cannot obtain any information about the plain-
texts of data records without the secret key sk. Therefore,
the query results are privacy-preserving in the cloud server.

Besides, although each query user has the same secret
key sk to decrypt query tokens and query results, the secure
symmetric encryption SE() guarantees that no query user
can recover query tokens and query results of other query
users. It is because that these tokens and results are en-
crypted by the shared key ki held only by the corresponding
query user ui. Thus, the query requests and query results are
also privacy-preserving for other query users.

6 PERFORMANCE EVALUATION

In this section, we experimentally evaluate the performance
of our proposed scheme and compare it with the alternative
scheme in terms of computational costs. Specifically, we
first explore the impacts of different datasets and query
workloads on our scheme. Then, we compare our scheme
with the existing privacy-preserving skyline query scheme
that is close to our scheme. Since the performance of our
scheme is related to the dataset size, the number of di-
mensions, and the domains, it is reasonable to synthesize
a dataset varying with the above mentioned parameters to
facilitate the observation of the impact of these parameters
on our scheme. The synthesized dataset has 20 dimensions
with 10000 tuples, in which ten of the dimensions have
a domain size of 100, and the others have a domain size

TABLE 1
Token generation time (ms) of MPDPE varying with d

d 3 4 5 6 7 8 9 10
Domain T=100 45 110 216 360 572 854 1264 1792
Domain T=50 6 13 26 46 74 109 156 212

TABLE 2
Token generation time (ms) of MPDPE varying with k

k 2 3 4 5 6 7 8 9
Domain T=100 1803 1803 1802 1803 1803 1802 1803 1803
Domain T=50 210 210 209 210 210 209 210 210

of 50. We implemented all schemes in Java and set the
number of dummy dimensions w = 2. All experiments are
conducted on 3.4 GHz Intel(R) CORE(TM) i7-3770 processes
and Ubuntu OS with 16GB RAM.

6.1 Performance of Our Proposed Scheme
Our privacy-preserving skyline query scheme has four
phases, namely, data outsourcing, token generation, skyline
search, and original data recovery. For different phases, their
performance will be affected by different parameters. For
example, the performance of data outsourcing is related to
the dataset, while the performance of token generation is
related to the query workload. Therefore, in the following,
we will evaluate the performance of these phases separately.

Data outsourcing. In the data outsourcing phase, our
scheme builds an R-tree over plaintexts and then en-
crypts the R-tree, in which the leaf nodes are encrypted
by MPDPE.Enc, and the non-leaf nodes are encrypted by
HRIPE.Enc. First, we will evaluate the performance of en-
cryption schemes applied on the leaf and non-leaf nodes.
Then, we compare the R-tree based data outsourcing with
the naive approach that only encrypts data records and
outsources them to the cloud, which can clearly show the
extra costs of R-tree for improving search efficiency. Fig. 3(a)
depicts the computational costs of encrypting a leaf and
non-leaf node varying with the number of dimensions. With
the dimension growing, both the encryption time of the
leaf and non-leaf node are increasing, especially, for the
larger domain cases. It is straightforward since the secret
key used in our scheme is a random matrix, and its size
grows with the dimensions and domain increasing. Besides,
we can see that encrypting non-leaf nodes is more expensive
than leaf nodes. It is because that the secret key applied on
non-leaf nodes has almost 4× size than that of leaf nodes.
Fig. 3(b) plots the computational costs of R-tree based data
outsourcing and naive approach varying with the number
of data records. Due to the operations of building R-tree and
encrypting non-leaf nodes, the R-tree based data outsourc-
ing inevitably incurs more computational costs than that of
naive approach. However, they are necessary trade-offs for
improving search efficiency.

Token generation. Our scheme has three query to-
kens generated by MPRPE.TokenGen, HRIPE.TokenGen,
and MPDPE.TokenGen, respectively. First, we evaluate the
computational costs for each token generation varying with
the number of total dimensions d. Then, we explore whether
the number of selected dimension k affects the performance
of the token generation. Since the MPDPE.TokenGen algo-
rithm needs to convert a query vector to the θ×θ query ma-
trix Q and encrypt Q using two secret keys, this token gen-
eration requires more time than the other two tokens that
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Fig. 3. Encryption time. T is domain size. (a) Encryption time per node
varying with the number of dimensions d; (b) Total encryption time
varying with the number of data records |X |.
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Fig. 4. Token generation time, T is domain size, and set |X | =10000.
(a) Varying with the number of dimensions d. (b) Varying with the
number of selected dimensions k.
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Fig. 5. User-defined skyline search time. T is domain size and set |X | =10000. (a) Varying with the number of data records |X |. Keep d=5, k=3,
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Fig. 6. Original data recovery time per data record. T is domain size,
and set |X | =10000. (a) Varying with the number of dimensions d. (b)
Varying with the number of selected dimensions k.

are encrypted only by one secret key. As a result, we plot
the performance of MPRPE.TokenGen and HRIPE.TokenGen
in Fig. 4 and list the performance of MPDPE.TokenGen
in Table 1 and Table 2. From Fig. 4, we can see that
HRIPE.TokenGen takes more time than MPRPE.TokenGen
in token generation. It is because that the query vector in
HRIPE.TokenGen is expanded to almost a 2d-dimensional
vector and then encrypted by the corresponding secret key.
In addition, Fig. 4(b) shows that the number of selected
dimensions has no impact on the performance of token
generation. It is reasonable since we hide the information
about the selected dimensions into query tokens, which
protects this privacy from leakage.

User-defined skyline search. If the search efficiency is
not considered, we can achieve the privacy-preserving user-
defined skyline query just with MPRPE and MPDPE, which
can be denoted as the baseline scheme. In the baseline scheme,
the cloud server needs to check the points that fall within a
hyper rectangle one by one. To improve efficiency, we pro-
pose HRIPE and employ it to support the multi-dimensional
range queries on encrypted R-tree. We say the R-tree based
skyline search scheme as the improved scheme. To clearly
show the improvement, we evaluate the performance of
the user-defined skyline search by comparing the baseline
scheme and improved scheme, as shown in Fig. 5, in which we

vary the parameters of the number of data records |X |, the
number of dimensions d, the number of selected dimensions
k, and the selectivity. All of the evaluation results show that
the improved scheme has better performance compared to the
baseline scheme. It is intuitive since using R-tree to determine
point-inside-rectangle is more efficient than checking points
one by one. Both Fig. 5(a) and Fig. 5(d) demonstrate that the
search time is linearly increasing with the corresponding pa-
rameters, i.e., the number of data records and the selectivity.
However, Fig. 5(a) has an increasing difference, while the
difference is stable for Fig. 5(d). The reason is that increasing
the number of data records indicates filtering out more data
records by checking the non-leaf nodes. While, for Fig. 5(d),
since the data records are fixed, the differences are relatively
stable with the growth of selectivities. Due to the similar
reason, Fig. 5(b) also shows a stable difference between
baseline and improved schemes varying with the number of
dimensions. For Fig. 5(c), it shows a very different trend, i.e.,
the search time will keep stable when k > 7. It is because the
more dimensions are selected, the less likely for the points
to dominate each other. When the amount of data records
returned stabilizes, the search time will tend to be stable.

Original data recovery. In data recovery phase, the
query user needs to decrypt ||x||L for recovering the original
data record x. Fig. 6 shows the average data recovery time
for each data record. Both Fig. 6(a) and Fig. 6(b) demonstrate
that the data recovery time will increase with the domain
size T growing. As similar reasons to the trend of the token
generation time (in Fig. 4), the data recovery time increases
with the number of dimensions growing and is not affected
by the number of selected dimensions.

6.2 Comparison with Existing Scheme
In this section, we compare our scheme with PUSC [14],
which is built upon the protocols proposed in [26]. To the
best of our knowledge, PUSC is the only scheme that is
close to our scheme since it achieves the privacy-preserving
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Fig. 7. Computational costs of data outsourcing. (a) Varying with the
number of data records and set d=5, k=3; (b) Varying with the number
of dimensions and set k=3.
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Fig. 8. Computational costs of token generation. (a) Varying with the
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selected dimensions and set d=10.
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Fig. 10. Computational costs of original data recovery. (a) Varying with
the number of dimensions and set k=3; (b) Varying with the number of
selected dimensions and set d=10.

skyline queries allowing the users to select attributes and
preferences. As PUSC cannot support the constrained region
in our user-defined skyline queries, we exclude this feature
from our scheme and adopt the aforementioned baseline
scheme as our scheme. Both the schemes are evaluated on
the dimensions with domain T = 100 and the security
parameter with 512. Since PUSC can also be divided into
four phases, i.e., data outsourcing, token generation, skyline
search, and original data recovery, we evaluate and compare
the computational costs of our scheme and PUSC in these
phases.

Data outsourcing. In this phase, the main operation of
these two schemes is to encrypt data records before sending
them to the cloud. PUSC adopts a double trapdoor public
key encryption [27], which is more expensive than our
predicate encryption. As a result, our scheme is much more
efficient than PUSC in data outsourcing. Fig. 7(a) shows
that the computational costs of both schemes are linearly
increasing with the number of data records. However, PUSC
increases sharply, and our scheme can achieve up to an
order of magnitude better performance than PUSC in data
outsourcing. Fig. 7(b) describes the computational costs of
both schemes varying with the number of dimensions d.
When d=10, our scheme is still at least 2× faster than PUSC.

Token generation. In Fig. 8, we depict the computational
costs of both schemes in token generation. Fig. 8(a) shows
that the computational cost of our scheme quadratically

increases with the number of dimensions, while PUSC is in-
dependent of the number of dimensions. The essence reason
is that our scheme generates and encrypts the query matrix
Qθ×θ, where θ =

∑d
i=1 Ti+3d+3, while PUSC only encrypts

the selected dimensions to generate tokens. Fig. 8(b) plots
a completely different trend. That is, our scheme remains
stable with the number of selected dimensions, while PUSC
increases. It indicates that, in the token generation phase,
the performance of our scheme is related to the number
of the total dimensions, while the performance of PUSC is
related to the number of selected dimensions. In fact, PUSC
leaks information about how many and which dimensions
are selected, while our scheme hides this information by
generating and encrypting the query matrix Q. Therefore,
our scheme sacrifices the performance in token generation
for improve security.

User-defined skyline search. Generally, the computa-
tional cost of searching skylines is the main concern for
a privacy-preserving skyline scheme. Fig. 9 depicts the
computational costs of our scheme and PUSC varying with
the number of data records, dimensions, and selected di-
mensions. Fig. 9(a) shows that the costs of our scheme and
PUSC linearly increase with the number of data records,
and the performance of our scheme is always two orders
of magnitude better than PUSC. Note that since PUSC is
much slow in searching skyline points, we have to use a
small number of data records from 50 to 500. As shown in
Fig. 9(b), although PUSC remains stable when the number of
dimensions increases, our scheme is at least 9× faster than
PUSC. In Fig. 9(c), we can see that the costs in both schemes
are increasing with the number of selected dimensions.
Meanwhile, Fig 9(c) shows that our scheme can achieve up
to an order of magnitude better performance than PUSC
when d = 10. The reason why our scheme has such a
significant performance advantage is that PUSC needs to
decrypt ciphertexts to determine the order relation and
apply homomorphic computations to obtain the dominat-
ing relations, while our scheme can directly determine the
dominating relations by calculating the inner product of two
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ciphertexts.
Original data recovery. In the original data recovery

phase, both our scheme and PUSC mainly involve the
decryption operations. Fig. 10 shows the average compu-
tational costs of these two schemes in recovering one en-
crypted point. From Fig. 10(a), we can see that the com-
putational costs of both schemes increase with the number
of dimensions. However, our scheme is at least 2× faster
than PUSC in recovering an encrypted data. It is because
that decrypting a ciphertext by matrix encryption is more
efficient than the double trapdoor public key encryption.
In Fig. 10(b), we plot the computational costs of these two
schemes varying with the number of selected dimensions.
As usual, our scheme keeps stable on this parameter. How-
ever, different from other phases, PUSC is independent of
the number of selected dimensions in the data recovery
phase. It is because, in this phase, PUSC needs to decrypt
all dimensions’ values and not just the selected dimensions.
Besides, Fig. 10(b) shows that our scheme is always around
2× faster than PUSH when d = 10.

7 RELATED WORK

Privacy-preserving multi-dimensional range queries.
Achieving multi-dimensional range queries over encrypted
data has been extensively studied. Boneh et al. [28] pro-
posed a private multi-dimensional range query scheme
by using the constructed hidden vector encryption, which
can achieve a linear search efficiency. To further improve
efficiency, Wang et al. [24] designed a sub-linear search
scheme by integrating R-tree into Boneh et al.’s scheme [28].
However, both schemes cannot preserve query privacy. Shi
et al. [23] presented a secure multi-dimensional range query
scheme based on anonymous identity-based encryption.
However, this scheme has a linear search efficiency and em-
ploys expensive public-key cryptography. In [29], Wang et
al. combined the R̂-tree and asymmetric scalar-product pre-
serving encryption to support the multi-dimensional range
query over encrypted data, while Mei et al. [30] adopted
the interval tree. Although these schemes are efficient, they
cannot preserve single-dimensional privacy. Based on the
bucketization approach, Hore et al. [31] and Lee [32] sep-
arately proposed a secure multi-dimensional range query
scheme to minimize the risk of disclosure while keeping
query cost under a certain threshold value. Unfortunately,
both schemes are in an approximate manner, i.e., the re-
turned results contain false positives. Besides, some privacy-
preserving multi-dimensional range query schemes [33],
[34] were proposed based on order preserving encryption
(OPE). However, the former leaks order relations for each
dimension, while the latter cannot dynamically support
range queries for any combination of dimensions and suf-
fers from huge storage overheads. Recently, Yang et al. [17]
proposed two privacy-preserving multi-dimensional range
query schemes: TRQED and TRQED+, in which TRQED is
over a single cloud, while TRQED+ is over a two-server
setting. Although TRQED also uses matrix encryption, its
prediction result is determined by every single dimension
and thus is weak in terms of preserving single-dimensional
privacy. Different from the above schemes, our privacy-
preserving multi-dimensional range query scheme can pre-

serve data privacy, query privacy, and single-dimension
privacy while returning accurate results.

Privacy-preserving skyline queries. With the emergence
of data outsourcing, privacy-preserving skyline queries
have attracted considerable attention [10]–[14], [35], [36].
In [10], Bothe et al. proposed a prototype system eSky-
line that enables the processing of skyline queries over
encrypted data. This scheme uses the matrix encryption
as the cryptographic primitive, and the key idea of this
scheme is very different from our scheme since it does not
consider the user-defined skyline queries. In [35], Liu et
al. proposed a secure skyline computation scheme across
multiple domains for supporting basic skyline computation.
This scheme adopted a lightweight addition homomorphic
encryption and designed secure protocols on a two-server
model. In 2018, Liu et al. [11] designed a secure dynamic
skyline query scheme over encrypted data. This work also
employed the addition homomorphic encryption and the
two-server model. In [12], Zheng et al. presented a privacy-
preserving skyline computation scheme based on Index and
leftist tree, which can perform skyline queries over merged
encrypted data. Recently, Zhang et al. [13] adopted a vari-
ant of ElGamal encryption to encrypt data records and
proposed a privacy-preserving probabilistic skyline com-
putation to select workers. However, all of these schemes
are achieved in a two-server model, which needs extra
communication costs and cannot be applied to support the
privacy-preserving user-defined skyline queries. Although
the work in [36] designed a secure skyline computation
scheme over the single cloud, it adopted the order-revealing
encryption (ORE) as the cryptographic primitive, leading to
the order information leakage in the single dimension. A
closely related work was proposed by Liu et al. [14], which
achieves a simple-version user-defined skyline query over
encrypted data by employing the double trapdoors public-
key cryptosystem. However, this scheme is also deployed
in a two-server model and cannot be directly used in our
user-defined skyline query scenario.

8 CONCLUSION

In this paper, we have proposed the first privacy-preserving
user-defined skyline query scheme without an additional
server. In particular, we first formally defined the user-
defined skyline query. Then, we proposed three predicate
encryption schemes, i.e., MPRPE, HRIPE, and MPDPE,
to determine point-inside-rectangle relations, intersection
relations, and dominating relations, respectively. Security
analysis showed that these predicate encryption schemes
are selectively secure, and our proposed scheme is indeed
privacy-preserving under the defined security model. In
addition, extensive performance experiments validated its
efficiency. In our future work, we expect to hide the access
pattern of our proposed scheme and further improve the
performance in generating query tokens.
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